Skip to content

DBT: Brazil Bol 2022

File location: s3://trase-storage/brazil/trade/bol/2022/BRAZIL_BOL_2022.csv

DBT model name: brazil_bol_2022

Explore on Metabase: Full table; summary statistics

DBT details


Description

This model was auto-generated based off .yml 'lineage' files in S3. The DBT model just raises an error; the actual script that created the data lives elsewhere. The script is located at trase/data/brazil/trade/bol/2022/BRAZIL_BOL_2022.py [permalink]. It was last run by Harry Biddle.


Details

Column Type Description
Dates Long Haul/YYYY VARCHAR
Dates Long Haul/MM VARCHAR
month VARCHAR
Dates Long Haul/YYYYMMDD VARCHAR
Commodity_HS_Datamar/HS4 English VARCHAR
hs6_description VARCHAR
hs8_description VARCHAR
Commodity Detail/BL Description VARCHAR
Identification/ID_Datamar VARCHAR
Cargo_Transport/Cargo Type VARCHAR
Cargo_Transport/Container Type VARCHAR
Place_and_Ports/POR_Country VARCHAR
Place_and_Ports/POMO_Name VARCHAR
port_of_export.label VARCHAR
country_of_destination.label VARCHAR
port_of_import.label VARCHAR
Place_and_Ports/POMD_Name VARCHAR
exporter.label VARCHAR
Company_Shipper/Shipper Name Detailed VARCHAR
Company_Shipper/Type VARCHAR
exporter.cnpj VARCHAR
exporter.country.label VARCHAR
exporter.state.label VARCHAR
exporter.municipality.label VARCHAR
Company_Shipper/Neighborhood VARCHAR
Company_Shipper/Street VARCHAR
Company_Shipper/Zip VARCHAR
Company_Forwarder/Forwarder Name VARCHAR
Company_Notify/Notify Name VARCHAR
importer.label VARCHAR
Company_Consignee/Consignee Name Detailed VARCHAR
Company_Consignee/Type VARCHAR
Company_Consignee/Registration Number VARCHAR
Company_Consignee/Country VARCHAR
Company_Consignee/State Name VARCHAR
Company_Consignee/City VARCHAR
Company_Consignee/Neighborhood VARCHAR
Company_Consignee/Street VARCHAR
Company_Consignee/Zip VARCHAR
Vessel Long Haul/Vessel Name Long Haul VARCHAR
Vessel Long Haul/Vessel Type Long Haul VARCHAR
Service/Service Name VARCHAR
Service/Transit Time VARCHAR
Service/Port Rotation VARCHAR
Carrier/Carrier Name VARCHAR
Carrier/Carrier Group Name VARCHAR
Carrier/Carrier Group SCAC VARCHAR
Carrier/Carrier Agent VARCHAR
TEU VARCHAR
vol VARCHAR
WTMT VARCHAR
C20 VARCHAR
C40 VARCHAR
year VARCHAR
hs6 VARCHAR
hs8 VARCHAR
hs4 VARCHAR
hs5 VARCHAR
exporter.type VARCHAR
exporter.state.name VARCHAR
exporter.state.trase_id VARCHAR
port_of_export.name VARCHAR
exporter.municipality.name VARCHAR
exporter.municipality.trase_id VARCHAR
country_of_destination.name VARCHAR
country_of_destination.trase_id VARCHAR
country_of_destination.economic_bloc VARCHAR
importer.trader_id VARCHAR
importer.name VARCHAR
importer.group VARCHAR
exporter.trase_id VARCHAR
exporter.trader_id VARCHAR
exporter.group VARCHAR
exporter.name VARCHAR

Models / Seeds

  • source.trase_duckdb.trase-storage-raw.dataliner_report_stockholm_exp_br_2022_with_cnpj
  • model.trase_duckdb.hs2017

Sources

  • ['trase-storage-raw', 'dataliner_report_stockholm_exp_br_2022_with_cnpj']
import numpy as np
import pandas as pd
import stdnum.br.cnpj
import stdnum.br.cpf
from psycopg2 import sql

from trase.tools import (
    find_label,
    get_country_id,
    get_label_trader_id,
    get_node_name,
    get_trader_group_id,
    uses_database,
)
from trase.tools.aws.aws_helpers_cached import get_pandas_df_once
from trase.tools.aws.metadata import write_csv_for_upload
from trase.tools.pandasdb.find import (
    find_default_name_by_node_id,
    find_economic_blocs_by_trase_id,
    find_traders_and_groups_by_label,
    find_traders_and_groups_by_trase_id,
)
from trase.tools.utilities.helpers import clean_string

YEAR = 2022
MISSING_VALUES = ["NAN", "NONE", "NA", ""]


def load_and_rename_data():
    df = get_pandas_df_once(
        "brazil/trade/bol/2022/originals/DataLiner_Report_STOCKHOLM_EXP_BR_2022_with_cnpj.xlsx",
        encoding="utf8",
        sep=";",
        dtype=str,
        keep_default_na=False,
        xlsx=True,
    )

    # set the first row as header
    df.columns = df.iloc[0]
    df = df.drop(df.index[0])

    # rename the columns
    columns = {
        "Dates Long Haul/YYYYMM": "month",
        # hs code
        "Commodity_HS_Datamar/HS6 English": "hs6_description",
        "Commodity_HS_Datamar/HS8 Portugues": "hs8_description",
        # exporter
        "Company_Shipper/City": "exporter.municipality.label",  # seems to be municipality...
        "Company_Shipper/Registration Number": "exporter.cnpj",
        "Company_Shipper/Shipper Name": "exporter.label",
        "Company_Shipper/State Name": "exporter.state.label",
        "Company_Shipper/Country Name": "exporter.country.label",
        # ports, country
        "Place_and_Ports/POL_Name": "port_of_export.label",
        "Place_and_Ports/POD_Name": "port_of_import.label",
        "Place_and_Ports/DEST_Country": "country_of_destination.label",
        # importer
        "Company_Consignee/Consignee Name": "importer.label",
        # volume, fob
        "WTKG": "vol",
    }
    df = df.rename(columns=columns, errors="raise")

    return df


def clean_time(df):
    """Parse time and do some basic checks"""
    assert (
        sum(df["month"].str.len() != 6) == 0
    ), "Column 'Period/YYYYMM' should only contain six digits."

    df["year"] = df["month"].str[:4]
    df["month"] = df["month"].str[-2:]

    assert sum(df["year"] != str(YEAR)) == 0, f"Year has to be {YEAR}."
    assert (
        df[(df["month"].astype(int) > 12) & (df["month"].astype(int) < 1)].shape[0] == 0
    ), f"Year has to be {YEAR}."
    return df


def clean_hs(df):
    """Do some basic checks of hs codes, and create hs4 and hs5 based on hs6."""
    # get hs codes from descriptions
    df["hs6"] = df["hs6_description"].str[:6]
    df["hs8"] = df["hs8_description"].str[:8]

    # check the basic format of the hs code columns
    assert (
        sum(df["hs6"].str.len() != 6) == 0
    ), "Column 'Commodity_HS_Datamar/HS6 Code' should contain 6 digits."
    assert (
        sum(df["hs8"].str.len() != 8) == 0
    ), "Column 'Commodity_HS_Datamar/HS8 Code' should contain 6 digits."

    assert (
        df[~df["hs6"].str.isdigit()].shape[0] == 0
    ), "Column 'Commodity_HS_Datamar/HS6 Code' should only contain digits."

    assert (
        df[~df["hs8"].str.isdigit()].shape[0] == 0
    ), "Column 'Commodity_HS_Datamar/HS8 Code' should only contain digits."

    assert (
        sum(df["hs6"] != df["hs8"].str[:6]) == 0
    ), "Column 'Commodity_HS_Datamar/HS6 Code' does not match 'Commodity_HS_Datamar/HS8 Code'."

    df["hs4"] = df["hs6"].str.slice(0, 4)
    df["hs5"] = df["hs6"].str.slice(0, 5)

    # check whether the hs4 codes already exist in our dict
    df_hscodes = get_pandas_df_once(
        "world/metadata/codes/hs/HS2017.csv", sep=";", dtype=str, keep_default_na=False
    )
    hs4_list = df_hscodes[df_hscodes["type"] == "hs4"]["code"].to_list()

    df = df[
        df["hs4"].isin(hs4_list)
    ]  # filter out the rows without valid hs4 in our dict, TODO: check whether it is the correct way to do this? do we need to check all the hs4/hs6 codes not included in the 2017 file

    return df


def clean_string_columns(df, column_list):
    # clean the string columns
    for column in column_list:
        df[column] = df[column].apply(clean_string)

    # replace null values to UNKNOWN
    for column in df.columns:
        df.loc[df[column].isin(MISSING_VALUES), column] = "UNKNOWN"

    return df


def clean_cnpjs(df):
    """Clean cnpjs and create a column 'exporter.type' indicating cnpj or cpf."""
    assert (
        df[~df["exporter.cnpj"].str.isdigit()].shape[0] == 0
    ), "Column 'Company_Shipper/Registration Number' should only contain digits."

    cnpj = df["exporter.cnpj"].str.rjust(14, "0")
    cnpj_valid = cnpj.apply(stdnum.br.cnpj.is_valid)

    cpf = df["exporter.cnpj"].str.rjust(11, "0")
    cpf_valid = cpf.apply(stdnum.br.cpf.is_valid)
    # cnpj_valid[cpf.isin(KNOWN_CPFS)] = False

    assert not any(cnpj_valid & cpf_valid)

    df["exporter.type"] = "unknown"
    df.loc[cnpj_valid, "exporter.type"] = "cnpj"
    df.loc[cpf_valid, "exporter.type"] = "cpf"

    df["exporter.cnpj"] = np.where(cnpj_valid, cnpj, df["exporter.cnpj"])
    df["exporter.cnpj"] = np.where(cpf_valid, cpf, df["exporter.cnpj"])
    df.loc[df["exporter.cnpj"] == "0", "exporter.cnpj"] = "0" * 14

    return df


@uses_database
def get_country_labels(cnx=None):
    """Retrieve country name, label, and trase_id"""
    df = pd.read_sql(
        """
        select distinct 
            name as "country_of_destination.name",
            unnest(synonyms) as "country_of_destination.label",
            coalesce(trase_id, 'XX') AS "country_of_destination.trase_id"
        from views.regions where level = 1 and length(trase_id) = 2
        """,
        cnx.cnx,
    )
    df_new_synonyms = pd.DataFrame(
        [
            ["SAINT KITTS AND NEVIS", "ST CHRISTOPHER AND NEVIS", "KN"],
        ],
        columns=[
            "country_of_destination.name",
            "country_of_destination.label",
            "country_of_destination.trase_id",
        ],
    )
    df = df.append(
        df_new_synonyms,
        ignore_index=True,
        verify_integrity=True,
    )

    # add economic bloc
    df[["country_of_destination.economic_bloc"]] = find_economic_blocs_by_trase_id(
        df.rename(columns={"country_of_destination.trase_id": "trase_id"})[
            ["trase_id"]
        ],
        returning=["economic_bloc_name"],
    )
    assert not any(df["country_of_destination.economic_bloc"].isna())
    assert all(df["country_of_destination.economic_bloc"].str.len() > 3)

    return df


def assert_none_missing(df, column):
    missing = df[df.pop("_merge") != "both"][column].drop_duplicates()
    assert missing.empty, f"Not all {column} found:\n{missing}"


def clean_countries(df):
    """Introduce country name and trase id to the dataframe"""
    df = pd.merge(
        df,
        get_country_labels(),
        on="country_of_destination.label",
        validate="many_to_one",
        how="left",
        indicator=True,
    )

    assert_none_missing(df, "country_of_destination.name")
    return df


@uses_database
def get_state_labels(cnx=None):
    """Retrieve state name, label, and trase_id"""
    df = pd.read_sql(
        """
        select distinct 
            name as "exporter.state.name",
            unnest(synonyms) as "exporter.state.label",
            coalesce(trase_id, 'BR-XX') AS "exporter.state.trase_id"
        from views.regions where level = 3 and length(trase_id) = 5 and country = 'BRAZIL'
        """,
        cnx.cnx,
    )
    return df


def clean_states(df):
    """Introduce state name and trase id to the dataframe"""

    # correct wrong states for certain municipalities
    municipality_state_dict = {
        "BUENOS AIRES": "PERNAMBUCO",
        "ALFENAS": "MINAS GERAIS",
    }
    for municipality, state in municipality_state_dict.items():
        df.loc[
            df["exporter.municipality.label"] == municipality, "exporter.state.label"
        ] = state

    df = pd.merge(
        df,
        get_state_labels(),
        on="exporter.state.label",
        validate="many_to_one",
        how="left",
        indicator=True,
    )

    assert_none_missing(df, "exporter.state.name")
    return df


@uses_database
def get_port_labels(cnx=None):
    df = pd.read_sql(
        """
        select distinct 
            name as "port_of_export.name", 
            unnest(synonyms) as "port_of_export.label"
        from views.regions where region_type = 'PORT' and country = 'BRAZIL'
        """,
        cnx.cnx,
    )
    df_new_synonyms = pd.DataFrame(
        [
            ["TROMBETAS", "TROMBETAS"],
            ["ALUMAR", "ALUMAR"],
            ["PONTA UBU", "PONTA UBU"],
            ["UNKNOWN", "PLACE_AND_PORTS/POL_NAME"],
            ["JURUTI", "JURUTI"],
            ["FLUMINENSE TERMINAL PORT", "FLUMINENSE TERMINAL PORT"],
            ["FLUMINENSE TERMINAL PORT", "BIJUPIRA SALEMA FIELD"],
        ],
        columns=["port_of_export.name", "port_of_export.label"],
    )
    df = df.append(
        df_new_synonyms,
        ignore_index=True,
        verify_integrity=True,
    )
    return df


def clean_ports(df):
    """Introduce port name and trase id to the dataframe"""
    df = pd.merge(
        df,
        get_port_labels(),
        on="port_of_export.label",
        validate="many_to_one",
        how="left",
        indicator=True,
    )

    assert_none_missing(df, "port_of_export.name")
    return df


@uses_database
def get_municipality_labels(cnx=None):
    df_municipalities = pd.read_sql(
        f"""
        select distinct
            name as "exporter.municipality.name",
            unnest(synonyms) as "exporter.municipality.label",
            trase_id as "exporter.municipality.trase_id",
            substr(trase_id, 0, 6) as "exporter.state.trase_id"
        from views.regions
        where country = 'BRAZIL' and region_type = 'MUNICIPALITY'
        """,
        cnx.cnx,
    )
    return df_municipalities


def clean_municipalities(df):
    """Introduce municipality name and trase id to the dataframe"""

    # correct some exporter countries
    municipality_external = {"ROTTERDAM": "NETHERLANDS"}
    for municipality, country in municipality_external.items():
        df.loc[
            df["exporter.municipality.label"] == municipality, "exporter.country.label"
        ] = country

    # correct some synonyms of municipalities
    municipality_synonyms = {
        "ESTRELA D OESTE": "ESTRELA D'OESTE",
        "CAPAO GRANDE": "VARZEA GRANDE",  # CAPAO GRANDE belongs to VARZEA GRANDE municipality
        "GOVERNADOR DIX SEPT ROSADO": "GOVERNADOR DIX-SEPT ROSADO",
        "DIAS D AVILA": "DIAS D'AVILA",
        "IDROLANDIA": "SIDROLANDIA",
        "JIPARANA": "JI-PARANA",
    }
    for synonym, municipality in municipality_synonyms.items():
        df.loc[
            df["exporter.municipality.label"] == synonym, "exporter.municipality.label"
        ] = municipality

    # BARUERI and ESTRELA D'OESTE both belong to SAO PAULO
    state_dict = {
        "exporter.state.label": "SAO PAULO",
        "exporter.state.name": "SAO PAULO",
        "exporter.state.trase_id": "BR-35",
    }
    for m in ["BARUERI", "ESTRELA D'OESTE"]:
        for c, v in state_dict.items():
            df.loc[df["exporter.municipality.label"] == m, c] = v

    # split df based on the exporter countries
    df_brazil = df[df["exporter.country.label"] == "BRAZIL"]
    df_no_brazil = df[df["exporter.country.label"] != "BRAZIL"]

    # merge with municipality information in DB
    df_brazil = pd.merge(
        df_brazil,
        get_municipality_labels(),
        on=["exporter.municipality.label", "exporter.state.trase_id"],
        validate="many_to_one",
        how="left",
        indicator=True,
    )
    assert_none_missing(df_brazil, "exporter.municipality.name")

    # replace municipality names and trase ids of foreign exporters to unknown
    df_no_brazil["exporter.municipality.name"] = "UNKNOWN MUNICIPALITY"
    df_no_brazil["exporter.municipality.trase_id"] = "BR-XXXXXXX"

    df = pd.concat([df_brazil, df_no_brazil])

    return df


def check_numerical(df, columns):
    for c in columns:
        num_array = df[c].str.lstrip(".").copy()
        assert (
            num_array.apply(pd.to_numeric, errors="coerce").notnull().all()
        ), f"Column {c} contains non-numerical value."


@uses_database
def clean_importers(df, cur=None, cnx=None):
    df_importers = df[["importer.label"]].drop_duplicates()

    # clean importer names
    df_importers[["importer.trader_id", "importer.name", "importer.group", "count"]] = (
        find_traders_and_groups_by_label(
            df_importers.rename(columns={"importer.label": "trader_label"}),
            returning=["trader_id", "trader_name", "group_name", "count"],
            year=sql.Literal(YEAR),
            cur=cur,
            cnx=cnx,
        )
    )

    # special case for UNKNOWN CUSTOMER (there are two!)
    is_unknown = (df_importers["count"] != 1) & (
        df_importers["importer.label"] == "UNKNOWN CUSTOMER"
    )
    if any(is_unknown):
        brazil_id = get_country_id("BRAZIL", cur=cur)
        label_id = find_label("UNKNOWN CUSTOMER", cur=cur)
        trader_id = get_label_trader_id(label_id, brazil_id)
        trader_name = get_node_name(trader_id, cur=cur)
        group_id = get_trader_group_id(trader_id, cur=cur)
        group_name = get_node_name(group_id, cur=cur)
        df_importers.loc[is_unknown, "importer.trader_id"] = trader_id
        df_importers.loc[is_unknown, "importer.name"] = trader_name
        df_importers.loc[is_unknown, "importer.group"] = group_name
        df_importers.loc[is_unknown, "count"] = 1

    # we should have found one unique node for every importer
    bad = df_importers.pop("count") != 1
    if any(bad):
        raise ValueError(f"Missing some importers:\n{df_importers[bad]}")

    # merge back into result
    df = pd.merge(
        df,
        df_importers,
        on=["importer.label"],
        how="left",
        validate="many_to_one",
        indicator=True,
    )
    merge = df.pop("_merge")
    assert all(merge == "both")
    return df


@uses_database
def clean_exporters_and_add_group(df, cur=None, cnx=None):
    """
    This function adds two columns:

        exporter.name - the default name of the exporter from the database
        exporter.group - the group name from the database

    It does this using the following algorithm:

     1. Construct a Trase ID from exporter.cnpj and use this to perform a lookup in the
        database
     2. If a unique name + group cannot be found through that method, use exporter.label
        to perform a lookup among trader labels in the database

    TODO: try to do this more concisely / in fewer lines of code
    """
    trase_ids = "BR-TRADER-" + df["exporter.cnpj"].str.slice(0, 8)
    trase_ids = trase_ids.replace({"BR-TRADER-00000000": None})
    df = df.assign(**{"exporter.trase_id": trase_ids})
    df_exporters = df[["exporter.label", "exporter.trase_id"]].drop_duplicates()

    # clean exporter names using trase id
    df_exporters[["exporter.trader_id", "exporter.group", "count"]] = (
        find_traders_and_groups_by_trase_id(
            df_exporters.rename(columns={"exporter.trase_id": "trase_id"})[
                ["trase_id"]
            ],
            returning=["trader_id", "group_name", "count"],
            year=sql.Literal(YEAR),
            cur=cur,
            cnx=cnx,
        )
    )
    counts = df_exporters.pop("count")
    assert all(counts.isin([0, 1]))
    not_found_by_trase_id = counts == 0
    print(
        f"{sum(~not_found_by_trase_id)} exporters were found by Trase ID and "
        f"{sum(not_found_by_trase_id)} were not"
    )
    df_found_by_trase_id = df_exporters[~not_found_by_trase_id]
    df_missing = df_exporters[not_found_by_trase_id].copy()

    # if not found by Trase ID, then look by name
    labels = df_missing["exporter.label"].drop_duplicates()
    df_labels = pd.DataFrame(labels)
    df_labels[["exporter.trader_id", "exporter.group", "count"]] = (
        find_traders_and_groups_by_label(
            df_labels.rename(columns={"exporter.label": "trader_label"}),
            returning=["trader_id", "group_name", "count"],
            year=sql.Literal(YEAR),
        )
    )

    # special case for UNKNOWN CUSTOMER
    is_unknown = (df_labels["count"] != 1) & (
        df_labels["exporter.label"] == "UNKNOWN CUSTOMER"
    )
    if any(is_unknown):
        brazil_id = get_country_id("BRAZIL", cur=cur)
        label_id = find_label("UNKNOWN CUSTOMER", cur=cur)
        trader_id = get_label_trader_id(label_id, brazil_id)
        group_id = get_trader_group_id(trader_id, cur=cur)
        group_name = get_node_name(group_id, cur=cur)
        df_labels.loc[is_unknown, "exporter.trader_id"] = trader_id
        df_labels.loc[is_unknown, "exporter.group"] = group_name
        df_labels.loc[is_unknown, "count"] = 1

    # we should have found one unique node for every exporter
    bad = df_labels.pop("count") != 1
    if any(bad):
        raise ValueError(f"Missing some exporters:\n{df_labels[bad]}")

    # merge exporters found by trase id back into results
    right = df_found_by_trase_id[
        ["exporter.trase_id", "exporter.trader_id", "exporter.group"]
    ].drop_duplicates()
    df1 = pd.merge(
        df,
        right,
        on=["exporter.trase_id"],
        how="left",
        validate="many_to_one",
        indicator=True,
    )
    merge = df1.pop("_merge")
    df_solved1 = df1[merge == "both"]

    # merge exporters found by label back into results
    df_unsolved = df1[merge != "both"]
    df_unsolved = df_unsolved.drop(
        columns=["exporter.trader_id", "exporter.group"], errors="raise"
    )

    right = df_labels[
        ["exporter.label", "exporter.trader_id", "exporter.group"]
    ].drop_duplicates()
    df_solved2 = pd.merge(
        df_unsolved,
        right,
        on=["exporter.label"],
        how="left",
        validate="many_to_one",
        indicator=True,
    )
    merge = df_solved2.pop("_merge")
    assert all(merge == "both")

    # combine the two
    expected_columns = list(set(df.columns) | {"exporter.trader_id", "exporter.group"})
    assert sorted(df_solved2.columns) == sorted(expected_columns)
    assert sorted(df_solved1.columns) == sorted(expected_columns)
    df_final = pd.concat([df_solved1, df_solved2]).reset_index(drop=True)

    # guarantee that we didn't change the original data
    a = df.sort_values(list(df.columns)).reset_index(drop=True)
    b = df_final[df.columns].sort_values(list(df.columns)).reset_index(drop=True)
    b.columns.name = a.columns.name  # needed for assert equal but don't know what it is
    pd.testing.assert_frame_equal(a, b)

    # add exporter names
    df_final = df_final.astype({"exporter.trader_id": int})
    df_final[["exporter.name"]] = find_default_name_by_node_id(
        df_final[["exporter.trader_id"]].rename(
            columns={"exporter.trader_id": "node_id"}
        ),
        returning=["name"],
        cnx=cnx,
        cur=cur,
    )

    return df_final


def main():
    df = load_and_rename_data()

    # clean time, hs codes, and cnpjs
    df = clean_time(df)
    df = clean_hs(df)
    df = clean_cnpjs(df)

    # clean string columns
    string_columns = [
        c for c in df.columns.to_list() if c not in ["vol", "WTMT", "fob"]
    ]
    df = clean_string_columns(df, string_columns)
    df = clean_states(df)
    df = clean_ports(df)
    df = clean_municipalities(df)
    df = clean_countries(df)
    df = clean_importers(df)
    df = clean_exporters_and_add_group(df)

    # check numerical columns
    num_column_list = ["vol", "WTMT"]
    check_numerical(df, num_column_list)

    # save to csv
    write_csv_for_upload(df, "brazil/trade/bol/2022/BRAZIL_BOL_2022.csv")


if __name__ == "__main__":
    main()
import pandas as pd


def model(dbt, cursor):
    dbt.ref("hs2017")
    dbt.source("trase-storage-raw", "dataliner_report_stockholm_exp_br_2022_with_cnpj")

    raise NotImplementedError()
    return pd.DataFrame({"hello": ["world"]})