DBT: Brazil Bol 2019
File location: s3://trase-storage/brazil/trade/bol/2019/BRAZIL_BOL_2019.csv
DBT model name: brazil_bol_2019
Explore on Metabase: Full table; summary statistics
DBT details
- Lineage
-
Dbt path:
trase_production.main_brazil.brazil_bol_2019 -
Containing yaml link: trase/data_pipeline/models/brazil/trade/bol/2019/_schema.yml
-
Model file: trase/data_pipeline/models/brazil/trade/bol/2019/brazil_bol_2019.py
-
Calls script:
trase/data/brazil/trade/bol/2019/BRAZIL_BOL_2019.py -
Tags:
mock_model,2019,bol,brazil,trade
Description
This model was auto-generated based off .yml 'lineage' files in S3. The DBT model just raises an error; the actual script that created the data lives elsewhere. The script is located at trase/data/brazil/trade/bol/2019/BRAZIL_BOL_2019.py [permalink]. It was last run by Harry Biddle.
Details
| Column | Type | Description |
|---|---|---|
date |
BIGINT |
|
hs4 |
VARCHAR |
|
hs6 |
VARCHAR |
|
hs8 |
VARCHAR |
|
country_of_origin.label |
VARCHAR |
|
exporter.cnpj |
VARCHAR |
|
exporter.label |
VARCHAR |
|
port_of_export.label |
VARCHAR |
|
port_of_import.label |
VARCHAR |
|
country_of_destination.label |
VARCHAR |
|
importer.city |
VARCHAR |
|
importer.label |
VARCHAR |
|
importer.country.label |
VARCHAR |
|
vessel.label |
VARCHAR |
|
vessel.id |
BIGINT |
|
vol |
BIGINT |
|
hs5 |
VARCHAR |
|
year |
BIGINT |
|
month |
BIGINT |
|
day |
BIGINT |
|
country_of_destination.name |
VARCHAR |
|
country_of_destination.trase_id |
VARCHAR |
|
port_of_export.name |
VARCHAR |
|
exporter.type |
VARCHAR |
|
exporter.trase_id |
VARCHAR |
|
exporter.trader_id |
BIGINT |
|
exporter.group |
VARCHAR |
|
exporter.name |
VARCHAR |
Models / Seeds
source.trase_duckdb.trase-storage-raw.lc_originals_brazil_bol_2019model.trase_duckdb.hs2017
Sources
['trase-storage-raw', 'lc_originals_brazil_bol_2019']
import numpy as np
import pandas as pd
import stdnum.br.cnpj
import stdnum.br.cpf
from psycopg2 import sql
from trase.tools import (
find_label,
get_country_id,
get_label_trader_id,
get_node_name,
get_trader_group_id,
)
from trase.tools.aws.aws_helpers_cached import get_pandas_df_once
from trase.tools.aws.metadata import write_csv_for_upload
from trase.tools.pandasdb.find import (
find_default_name_by_node_id,
find_traders_and_groups_by_label,
find_traders_and_groups_by_trase_id,
)
from trase.tools.pcs.connect import uses_database
KNOWN_CPFS = ["00331627949", "00523682891", "00297458108", "00216760895"]
YEAR = 2019
def select_and_rename_columns(df):
columns = {
"Period/YYYYMMDD": "date",
"Commodity_HS_Datamar/HS4 Code": "hs4",
"Commodity_HS_Datamar/HS6 Code": "hs6",
"Commodity_HS/HS8 Code": "hs8",
"Place_and_Ports/POL_Country": "country_of_origin.label",
# exporter
"Company_Shipper/Registration Number": "exporter.cnpj",
"Company_Shipper/Shipper Name": "exporter.label",
# ports, country
"Place_and_Ports/POL_Name": "port_of_export.label",
"Place_and_Ports/POD_Name": "port_of_import.label",
"Place_and_Ports/DEST_Country": "country_of_destination.label",
# importer
"Company_Consignee/City": "importer.city",
"Company_Consignee/Consignee Name": "importer.label",
"Company_Consignee/Country": "importer.country.label",
# vessel
"Vessel/Vessel Name": "vessel.label",
"Vessel/IMO": "vessel.id",
# volume
"WTKG": "vol",
}
return df[columns].rename(columns=columns, errors="raise")
def clean_hs_codes(df):
# download an authoritative list of HS codes
df_hscodes = get_pandas_df_once(
"world/metadata/codes/hs/HS2017.csv", sep=";", dtype=str, keep_default_na=False
)
# fix some specific codes
df = df.replace(
{
"hs6": {
# HS6 codes that are actually HS5
"010220": "01022X",
"160230": "16023X",
"160240": "16024X",
"090110": "09011X",
"020710": "02071X",
"020320": "02032X",
"110810": "11081X",
# HS6 codes that are actually HS4
"010200": "0102XX",
"020200": "0202XX",
"020300": "0203XX",
"020600": "0206XX",
"120100": "1201XX",
"020700": "0207XX",
"090100": "0901XX",
"100500": "1005XX",
"110300": "1103XX",
"110400": "1104XX",
"110800": "1108XX",
"120700": "1207XX",
"140400": "1404XX",
"150700": "1507XX",
"151100": "1511XX",
"151200": "1512XX",
"160200": "1602XX",
"180300": "1803XX",
"230600": "2306XX",
"240100": "2401XX",
"260100": "2601XX",
},
}
)
# the HS8 code "00330000" seems to be unknown
df = df.assign(hs8=df["hs8"].mask(df["hs8"] == "00330000", df["hs6"] + "XX"))
# validate that codes are hierarchical and the right length
assert all(df["hs8"].str.len() == 8)
df["hs5"] = df["hs6"].str.slice(0, 5)
assert all(df["hs4"] == df["hs8"].str.slice(0, 4))
assert all(df["hs4"] == df["hs6"].str.slice(0, 4))
# validate that all HS4 codes exist
df_hs4 = df_hscodes[df_hscodes["type"] == "hs4"]["code"].rename("hs4")
d = pd.merge(df, df_hs4, how="left", validate="many_to_one", indicator=True)
assert all(d["_merge"] == "both")
# validate that all HS5 codes exist
df_hs5 = (
df_hscodes[df_hscodes["type"] == "hs6"]["code"]
.str.slice(0, 5)
.rename("hs5")
.drop_duplicates()
)
d = pd.merge(df, df_hs5, how="left", validate="many_to_one", indicator=True)
assert all(d["hs5"].str.endswith("X") | (d["_merge"] == "both"))
# validate that all HS6 codes exist
df_hs6 = df_hscodes[df_hscodes["type"] == "hs6"]["code"].rename("hs6")
d = pd.merge(df, df_hs6, how="left", validate="many_to_one", indicator=True)
assert all(d["hs6"].str.endswith("X") | (d["_merge"] == "both"))
return df
def assert_full_merge(df, column):
missing = df[df.pop("_merge") != "both"][column].drop_duplicates()
assert missing.empty, f"Not all {column} found:\n{missing}"
def clean_cnpjs(df):
# manually add missing CPF for GUILHERME AUGUSTIN
a = df["exporter.label"] == "GUILHERME AUGUSTIN"
b = df["exporter.cnpj"].astype(int) == 0
df = df.copy()
df.loc[a & b, "exporter.cnpj"] = "38853329149"
# validate all CNPJs & CPFs
cnpj = df["exporter.cnpj"].str.rjust(14, "0")
cnpj_valid = cnpj.apply(stdnum.br.cnpj.is_valid)
cpf = df["exporter.cnpj"].str.rjust(11, "0")
cpf_valid = cpf.apply(stdnum.br.cpf.is_valid)
cnpj_valid[cpf.isin(KNOWN_CPFS)] = False
assert not any(cnpj_valid & cpf_valid)
df = df.copy()
df["exporter.type"] = "unknown"
df.loc[cnpj_valid, "exporter.type"] = "cnpj"
df.loc[cpf_valid, "exporter.type"] = "cpf"
df["exporter.cnpj"] = np.where(cnpj_valid, cnpj, df["exporter.cnpj"])
df["exporter.cnpj"] = np.where(cpf_valid, cpf, df["exporter.cnpj"])
return df
@uses_database
def get_port_labels(cnx=None):
return pd.read_sql(
"""
select distinct
name as "port_of_export.name",
unnest(synonyms) as "port_of_export.label"
from views.regions where region_type = 'PORT' and country = 'BRAZIL'
""",
cnx.cnx,
)
def clean_ports(df):
df = pd.merge(
df,
get_port_labels(),
on="port_of_export.label",
validate="many_to_one",
how="left",
indicator=True,
)
assert_full_merge(df, "port_of_export.label")
return df
@uses_database
def get_country_labels(cnx=None):
return pd.read_sql(
"""
select distinct
name as "country_of_destination.name",
unnest(synonyms) as "country_of_destination.label",
coalesce(trase_id, 'XX') AS "country_of_destination.trase_id"
from views.regions where level = 1 and length(trase_id) = 2
""",
cnx.cnx,
)
def clean_countries(df):
df = pd.merge(
df,
get_country_labels(),
on="country_of_destination.label",
validate="many_to_one",
how="left",
indicator=True,
)
assert_full_merge(df, "country_of_destination.label")
return df
@uses_database
def clean_exporters_and_add_group(df, cur=None, cnx=None):
"""
This function adds two columns:
exporter.name - the default name of the exporter from the database
exporter.group - the group name from the database
It does this using the following algorithm:
1. Construct a Trase ID from exporter.cnpj and use this to perform a lookup in the
database
2. If a unique name + group cannot be found through that method, use exporter.label
to perform a lookup among trader labels in the database
TODO: try to do this more concisely / in fewer lines of code
"""
trase_ids = "BR-TRADER-" + df["exporter.cnpj"].str.slice(0, 8)
trase_ids = trase_ids.replace({"BR-TRADER-00000000": None})
df = df.assign(**{"exporter.trase_id": trase_ids})
df_exporters = df[["exporter.label", "exporter.trase_id"]].drop_duplicates()
# clean exporter names using trase id
df_exporters[["exporter.trader_id", "exporter.group", "count"]] = (
find_traders_and_groups_by_trase_id(
df_exporters.rename(columns={"exporter.trase_id": "trase_id"})[
["trase_id"]
],
returning=["trader_id", "group_name", "count"],
year=sql.Literal(YEAR),
cur=cur,
cnx=cnx,
)
)
counts = df_exporters.pop("count")
assert all(counts.isin([0, 1]))
not_found_by_trase_id = counts == 0
print(
f"{sum(~not_found_by_trase_id)} exporters were found by Trase ID and "
f"{sum(not_found_by_trase_id)} were not"
)
df_found_by_trase_id = df_exporters[~not_found_by_trase_id]
df_missing = df_exporters[not_found_by_trase_id].copy()
# if not found by Trase ID, then look by name
labels = df_missing["exporter.label"].drop_duplicates()
df_labels = pd.DataFrame(labels)
df_labels[["exporter.trader_id", "exporter.group", "count"]] = (
find_traders_and_groups_by_label(
df_labels.rename(columns={"exporter.label": "trader_label"}),
returning=["trader_id", "group_name", "count"],
year=sql.Literal(YEAR),
)
)
# special case for UNKNOWN CUSTOMER
is_unknown = (df_labels["count"] != 1) & (
df_labels["exporter.label"] == "UNKNOWN CUSTOMER"
)
if any(is_unknown):
brazil_id = get_country_id("BRAZIL", cur=cur)
label_id = find_label("UNKNOWN CUSTOMER", cur=cur)
trader_id = get_label_trader_id(label_id, brazil_id)
group_id = get_trader_group_id(trader_id, cur=cur)
group_name = get_node_name(group_id, cur=cur)
df_labels.loc[is_unknown, "exporter.trader_id"] = trader_id
df_labels.loc[is_unknown, "exporter.group"] = group_name
df_labels.loc[is_unknown, "count"] = 1
# we should have found one unique node for every exporter
bad = df_labels["count"] != 1
if any(bad):
raise ValueError(f"Missing some exporters:\n{df_labels[bad]}")
# merge exporters found by trase id back into results
right = df_found_by_trase_id[
["exporter.trase_id", "exporter.trader_id", "exporter.group"]
].drop_duplicates()
df1 = pd.merge(
df,
right,
on=["exporter.trase_id"],
how="left",
validate="many_to_one",
indicator=True,
)
merge = df1.pop("_merge")
df_solved1 = df1[merge == "both"]
# merge exporters found by label back into results
df_unsolved = df1[merge != "both"]
df_unsolved = df_unsolved.drop(
columns=["exporter.trader_id", "exporter.group"], errors="raise"
)
right = df_labels[
["exporter.label", "exporter.trader_id", "exporter.group"]
].drop_duplicates()
df_solved2 = pd.merge(
df_unsolved,
right,
on=["exporter.label"],
how="left",
validate="many_to_one",
indicator=True,
)
merge = df_solved2.pop("_merge")
assert all(merge == "both")
# combine the two
expected_columns = list(set(df.columns) | {"exporter.trader_id", "exporter.group"})
assert sorted(df_solved2.columns) == sorted(expected_columns)
assert sorted(df_solved1.columns) == sorted(expected_columns)
df_final = pd.concat([df_solved1, df_solved2]).reset_index(drop=True)
# guarantee that we didn't change the original data
a = df.sort_values(list(df.columns)).reset_index(drop=True)
b = df_final[df.columns].sort_values(list(df.columns)).reset_index(drop=True)
b.columns.name = a.columns.name # needed for assert equal but don't know what it is
pd.testing.assert_frame_equal(a, b)
# add exporter names
df_final = df_final.astype({"exporter.trader_id": int})
df_final[["exporter.name"]] = find_default_name_by_node_id(
df_final[["exporter.trader_id"]].rename(
columns={"exporter.trader_id": "node_id"}
),
returning=["name"],
cnx=cnx,
cur=cur,
)
return df_final
def main():
df = get_pandas_df_once(
"brazil/trade/bol/2019/originals/Brazil_Bol_2019.csv",
sep=";",
dtype=str,
keep_default_na=False,
)
df = select_and_rename_columns(df)
df = clean_hs_codes(df)
df = df.assign(
year=df["date"].str.slice(0, 4).astype(int),
month=df["date"].str.slice(4, 6).astype(int),
day=df["date"].str.slice(6, 8).astype(int),
)
df = clean_countries(df)
df = clean_ports(df)
df = clean_cnpjs(df)
df = clean_exporters_and_add_group(df)
write_csv_for_upload(df, "brazil/trade/bol/2019/BRAZIL_BOL_2019.csv")
if __name__ == "__main__":
main()
import pandas as pd
def model(dbt, cursor):
dbt.ref("hs2017")
dbt.source("trase-storage-raw", "lc_originals_brazil_bol_2019")
raise NotImplementedError()
return pd.DataFrame({"hello": ["world"]})