View or edit on GitHub
This page is synchronized from trase/data/indonesia/palm_oil/indicators/q1_2024/quality_assessment/QA_metrics.md. Last modified on 2026-02-03 10:30 CET by Jason J. Benedict.
Please view or edit the original file there; changes should be reflected here after a midnight build (CET time),
or manually triggering it with a GitHub action (link).
Metrics QA for Indonesia Oil palm
Here I check
- trends,
- compare metrics between datasets
- (tbd compare metrics between the new updated metrics and the previous metrics )
at country level and/or island level (coming from jasons prodctions data)
Relevant metrics are:
- territorial palm deforestation (lag3 Agg10 and current lag3 Agg1)
- territorial deforestation similar to current palm deforestation (lag and aggregation period)
- territorial deforestation (gaveau)
- territorial deforestation (JRC vancutsem)
- territorial forest area (gaveau)
- territorial forest area (JRC vancutsem)
- palm area HA
- palm production (t)
- palm on peat area
- burned and peat area
checking key metrics to previous data
- palm area and tons
- palm deforestation
- peat area
## # A tibble: 273,493 × 11
## conc_code ffb_code kab kab_code kec_code prov_code ind_palm_ha
## <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 2 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 3 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 4 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 5 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 6 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 7 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 8 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 9 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 10 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## # ℹ 273,483 more rows
## # ℹ 4 more variables: YEAR_PLANTING <dbl>, YEAR_HARVEST <dbl>,
## # sml_palm_ha <dbl>, palm_ha <dbl>
## conc_code ffb_code kab kab_code
## Length:261602 Length:261602 Length:261602 Min. :1101
## Class :character Class :character Class :character 1st Qu.:1607
## Mode :character Mode :character Mode :character Median :3517
## Mean :4460
## 3rd Qu.:6405
## Max. :9471
## kec_code prov_code ind_palm_ha YEAR_PLANTING
## Length:261602 Min. :11.0 Min. : 0.00 Min. :2000
## Class :character 1st Qu.:16.0 1st Qu.: 0.00 1st Qu.:2005
## Mode :character Median :35.0 Median : 0.00 Median :2010
## Mean :44.5 Mean : 634.08 Mean :2010
## 3rd Qu.:64.0 3rd Qu.: 0.47 3rd Qu.:2016
## Max. :94.0 Max. :69473.67 Max. :2021
## YEAR_HARVEST sml_palm_ha palm_ha
## Min. :2003 Min. : 0.00 Min. : 0.0
## 1st Qu.:2008 1st Qu.: 0.00 1st Qu.: 0.0
## Median :2014 Median : 0.00 Median : 0.0
## Mean :2014 Mean : 442.87 Mean : 1076.9
## 3rd Qu.:2019 3rd Qu.: 68.75 3rd Qu.: 311.2
## Max. :2024 Max. :69752.45 Max. :103134.1
## # A tibble: 18 × 5
## YEAR_HARVEST curr_PALM_HA prev_PALM_HA difference_ha difference_perc
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2003 7893454. 7758250 135204. 1.74
## 2 2004 8083304. 7947517 135787. 1.71
## 3 2005 8285916. 8150295 135621. 1.66
## 4 2006 8416627. 8279138 137489. 1.66
## 5 2007 8849968. 8708747 141221. 1.62
## 6 2008 9361714. 9217076 144638. 1.57
## 7 2009 9954473. 9807386 147087. 1.50
## 8 2010 10548446. 10396177 152269. 1.46
## 9 2011 11259095. 11102275 156820. 1.41
## 10 2012 12104569. 11937739 166830. 1.40
## 11 2013 12683308. 12508078 175230. 1.40
## 12 2014 13366922. 13181424 185498. 1.41
## 13 2015 14184254. 13980744 203510. 1.46
## 14 2016 14771821. 14556713 215108. 1.48
## 15 2017 15290078. 15067018 223060. 1.48
## 16 2018 15660552. 15427909 232643. 1.51
## 17 2019 15933180. 15687632 245548. 1.57
## 18 2020 16146427. 15895357 251070. 1.58




## # A tibble: 30 × 16
## conc_code.x ffb_code kab kab_code kec_code.x prov_code ind_palm_ha
## <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 2 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 3 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 4 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 5 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 6 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 7 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 8 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 9 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## 10 GFW0214 FFB-08724 KETAPANG 6106 61.04.04 61 0
## # ℹ 20 more rows
## # ℹ 9 more variables: YEAR_PLANTING <dbl>, YEAR_HARVEST <dbl>,
## # sml_palm_ha <dbl>, palm_ha <dbl>, conc_code.y <chr>, kec_code.y <chr>,
## # variable <chr>, prev_PALM_HA <dbl>, trase_id <chr>
here I find individual differences, that may affect embedding of the new data into the previous models
## # A tibble: 3 × 3
## YEAR ann tot
## <dbl> <dbl> <dbl>
## 1 2018 159627 1596270
## 2 2019 152318 1523180
## 3 2020 145607 1456070
## # A tibble: 3 × 3
## # Groups: year [3]
## year variable ann
## <dbl> <chr> <dbl>
## 1 2018 popdgaveau_2018 159627
## 2 2019 popdgaveau_2019 152318
## 3 2020 popdgaveau_2020 145607
## # A tibble: 3 × 4
## YEAR total ind sml
## <dbl> <dbl> <dbl> <dbl>
## 1 2018 2155872. 1611517. 544354.
## 2 2019 2037512. 1537911. 499601.
## 3 2020 1929894. 1471259. 458634.
## # A tibble: 273,493 × 11
## conc_code ffb_code kab kab_code kec_code prov_code ind_palm_ha
## <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 2 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 3 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 4 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 5 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 6 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 7 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 8 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 9 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## 10 <NA> FFB-03178 LOMBOK BARAT 5201 52.01.02 52 0
## # ℹ 273,483 more rows
## # ℹ 4 more variables: YEAR_PLANTING <dbl>, YEAR_HARVEST <dbl>,
## # sml_palm_ha <dbl>, palm_ha <dbl>
## conc_code ffb_code kab kab_code
## Length:225929 Length:225929 Length:225929 Min. :1101
## Class :character Class :character Class :character 1st Qu.:1607
## Mode :character Mode :character Mode :character Median :3517
## Mean :4460
## 3rd Qu.:6405
## Max. :9471
## kec_code prov_code ind_palm_ha YEAR_PLANTING
## Length:225929 Min. :11.0 Min. : 0.0 Min. :2000
## Class :character 1st Qu.:16.0 1st Qu.: 0.0 1st Qu.:2004
## Mode :character Median :35.0 Median : 0.0 Median :2009
## Mean :44.5 Mean : 595.2 Mean :2009
## 3rd Qu.:64.0 3rd Qu.: 0.0 3rd Qu.:2014
## Max. :94.0 Max. :69473.7 Max. :2018
## YEAR_HARVEST sml_palm_ha palm_ha
## Min. :2003 Min. : 0.00 Min. : 0.0
## 1st Qu.:2007 1st Qu.: 0.00 1st Qu.: 0.0
## Median :2012 Median : 0.00 Median : 0.0
## Mean :2012 Mean : 419.00 Mean : 1014.2
## 3rd Qu.:2017 3rd Qu.: 61.72 3rd Qu.: 263.4
## Max. :2021 Max. :61915.21 Max. :95497.5
## # A tibble: 35,673 × 10
## ffb_code kab_code prov_code YEAR_HARVEST ind_palm_ha sml_palm_ha palm_ha
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 FFB-03178 5201 52 2018 0 0 0
## 2 FFB-03178 5201 52 2019 0 0 0
## 3 FFB-03178 5201 52 2020 0 0 0
## 4 FFB-03179 5201 52 2018 0 0 0
## 5 FFB-03179 5201 52 2019 0 0 0
## 6 FFB-03179 5201 52 2020 0 0 0
## 7 FFB-03180 5201 52 2018 0 0 0
## 8 FFB-03180 5201 52 2019 0 0 0
## 9 FFB-03180 5201 52 2020 0 0 0
## 10 FFB-03181 5201 52 2018 0 0 0
## # ℹ 35,663 more rows
## # ℹ 3 more variables: value <dbl>, palm_area_diff_ha <dbl>,
## # palm_area_diff_perc <dbl>
## # A tibble: 11,891 × 10
## ffb_code kab_code prov_code YEAR_HARVEST ind_palm_ha sml_palm_ha palm_ha
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 FFB-03178 5201 52 2016 0 0 0
## 2 FFB-03179 5201 52 2016 0 0 0
## 3 FFB-03180 5201 52 2016 0 0 0
## 4 FFB-03181 5201 52 2016 0 0 0
## 5 FFB-03182 5201 52 2016 0 0 0
## 6 FFB-03183 5201 52 2016 0 0 0
## 7 FFB-03184 5201 52 2016 0 0 0
## 8 FFB-03185 5201 52 2016 0 0 0
## 9 FFB-03186 5201 52 2016 0 0 0
## 10 FFB-03187 5201 52 2016 0 0 0
## # ℹ 11,881 more rows
## # ℹ 3 more variables: value <dbl>, palm_area_diff_ha <dbl>,
## # palm_area_diff_perc <dbl>
## # A tibble: 4 × 10
## YEAR_HARVEST n_inf n_is_na mean_diff median_diff mean_dif_perc med_dif_perc
## <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 2017 99 0 18.8 0 Inf 0.290
## 2 2018 102 0 19.6 0 Inf 0.290
## 3 2019 99 0 20.6 0 Inf 0.286
## 4 2020 97 0 21.1 0 Inf 0.293
## # ℹ 3 more variables: max_dif_perc <dbl>, min_dif_perc <dbl>, sd_dif_perc <dbl>
## ffb_code kab_code prov_code YEAR_HARVEST
## Length:214038 Min. :1101 Min. :11.0 Min. :2003
## Class :character 1st Qu.:1607 1st Qu.:16.0 1st Qu.:2007
## Mode :character Median :3517 Median :35.0 Median :2012
## Mean :4460 Mean :44.5 Mean :2012
## 3rd Qu.:6405 3rd Qu.:64.0 3rd Qu.:2016
## Max. :9471 Max. :94.0 Max. :2020
##
## ind_palm_ha sml_palm_ha palm_ha value
## Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.0 Median : 0.00 Median : 0.0 Median : 0.0
## Mean : 580.4 Mean : 413.80 Mean : 994.2 Mean : 979.3
## 3rd Qu.: 0.0 3rd Qu.: 60.34 3rd Qu.: 249.9 3rd Qu.: 232.0
## Max. :69473.7 Max. :61492.09 Max. :94934.8 Max. :91037.0
##
## palm_area_diff_ha palm_area_diff_perc
## Min. :-18393.00 Min. :-100.00
## 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.32
## Mean : 14.88 Mean : Inf
## 3rd Qu.: 1.00 3rd Qu.: 3.19
## Max. : 6606.00 Max. : Inf
## NA's :126329
## # A tibble: 3 × 6
## YEAR_HARVEST mean_dif_perc med_dif_perc max_dif_perc min_dif_perc sd_dif_perc
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2018 40.0 1.21 936. -1.16 180.
## 2 2019 40.1 1.29 938. -2.10 180.
## 3 2020 40.2 1.30 941. -2.10 181.
## # A tibble: 3 × 5
## YEAR_HARVEST palm_ha value palm_area_diff_ha palm_area_diff_perc
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2018 15660552. 15427909 232643. 1.51
## 2 2019 15933180. 15687632 245548. 1.57
## 3 2020 16146427. 15895357 251070. 1.58
## # A tibble: 3 × 6
## YEAR BURNED_HA_nr BURNED_HA_r value n perc
## <dbl> <dbl> <dbl> <dbl> <int> <dbl>
## 1 2018 571665. 571694 521297 11891 0.00499
## 2 2019 1765473. 1765456 1635132 11891 -0.000953
## 3 2020 332011. 332004 291272 11891 -0.00218
## conc_code.x ffb_code kab kab_code
## Length:71346 Length:71346 Length:71346 Min. :1101
## Class :character Class :character Class :character 1st Qu.:1607
## Mode :character Mode :character Mode :character Median :3517
## Mean :4460
## 3rd Qu.:6405
## Max. :9471
## kec_code.x prov_code BURNED_HA YEAR
## Length:71346 Min. :11.0 Min. : 0.00 Min. :2015
## Class :character 1st Qu.:16.0 1st Qu.: 0.00 1st Qu.:2016
## Mode :character Median :35.0 Median : 0.00 Median :2018
## Mean :44.5 Mean : 83.66 Mean :2018
## 3rd Qu.:64.0 3rd Qu.: 0.00 3rd Qu.:2019
## Max. :94.0 Max. :116532.64 Max. :2020
## BURNED_PEAT_HA PEAT_HA conc_code.y kec_code.y
## Min. : 0.00 Min. : 0 Length:71346 Length:71346
## 1st Qu.: 0.00 1st Qu.: 0 Class :character Class :character
## Median : 0.00 Median : 0 Mode :character Mode :character
## Mean : 21.74 Mean : 1138
## 3rd Qu.: 0.00 3rd Qu.: 0
## Max. :60204.65 Max. :280480
## variable value trase_id
## Length:71346 Min. : 0.00 Length:71346
## Class :character 1st Qu.: 0.00 Class :character
## Mode :character Median : 0.00 Mode :character
## Mean : 78.77
## 3rd Qu.: 0.00
## Max. :115005.00
## # A tibble: 3 × 6
## YEAR BURNED_HA_nr BURNED_HA_r value n perc
## <dbl> <dbl> <dbl> <dbl> <int> <dbl>
## 1 2018 571665. 571694 521297 11891 0.00499
## 2 2019 1765473. 1765456 1635132 11891 -0.000953
## 3 2020 332011. 332004 291272 11891 -0.00218
Palm deforestation
Trends of past palm deforestation using Gavou-TreeMap and 3 years lag, 10 year aggregation


Trends of current palm deforestation using Gavou-TreeMap (no lag, 1 year aggregation)


Overall deforestation by island and national
Trends in overal deforestation comparing Gavou-TreeMap and Vancutsem JRC-TMF
Comparing Gavou and Vancutem indicates that Gavou maps distinctly less overall deforestation. Trends are similar. I belive, Vancutsem is know to overestimate deforestation due to inclusion of shrublands ?


Percent palm deforestation
combining ‘active’/current palm deforestation (see above) and gavou deforestation using 3 year lag. Values are percent palm deforestation of total deforestation.


Forest area
Trends in overal forest area comparing Gavou-TreeMap and Vancutsem JRC-TMF
There is more forest mapped by Vancutsem JRC-TMF
Burned & peat area trends
Burned area from MoEF and Indonesias oficial peat map (see woodpulp documentation)

Palm & peat area
Palm area is based on:
- Industrial palm area Gavou TreeMap 2001-2022 or harvested 2004-2025
- Smalholder palm area 2001-2019 Gavou TreeMap (Harveste 2003-2022)
- Smalholder palm area 2020 Auriga (excluding Industrial area from Gavou) + areas mapped previously (Gavou) (Harveste 2023)
- Smalholder palm area 2021 MOA (excluding Industrial area from Gavou) + areas mapped previously (Gavou) (Harveste 2024)




## # A tibble: 23 × 2
## YEAR_HARVEST palm_mha
## <dbl> <dbl>
## 1 2003 7.89
## 2 2004 8.08
## 3 2005 8.29
## 4 2006 8.42
## 5 2007 8.85
## 6 2008 9.36
## 7 2009 9.95
## 8 2010 10.5
## 9 2011 11.3
## 10 2012 12.1
## # ℹ 13 more rows
## # A tibble: 23 × 2
## YEAR_HARVEST peat_palm_mha
## <dbl> <dbl>
## 1 2003 0.687
## 2 2004 0.718
## 3 2005 0.758
## 4 2006 0.778
## 5 2007 0.861
## 6 2008 0.971
## 7 2009 1.07
## 8 2010 1.17
## 9 2011 1.31
## 10 2012 1.45
## # ℹ 13 more rows
## # A tibble: 3 × 3
## # Groups: year [3]
## year variable peat_palm_mha
## <dbl> <chr> <dbl>
## 1 2018 oilpalmpeat_2018 2.27
## 2 2019 oilpalmpeat_2019 2.30
## 3 2020 oilpalmpeat_2020 2.34
Palm production tons
Based on palm area palm suitability and production tons per island (calculated by Jason)
