This document puts together the information needed for the Deforestation Metrics paper that we expect to submit in 2022. In the paper, we want to use Brazilian soy to show differences in information from the backward- and forward-looking measures which we calculate as:
## Reading layer `BRA_adm0' from data source
## `C:\Users\michael.lathuilliere\Documents\GIS DataBase\Admin\BR-IBGE\BRA_adm0.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 1 feature and 67 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -73.98971 ymin: -33.74708 xmax: -28.84694 ymax: 5.264878
## Geodetic CRS: WGS 84
We start by looking at Brazilian soy deforestation exposure for imports into the EU27 + UK in 2017.
Soy deforestation exposure (in ha) in the EU27 + UK supply chain refers to the amount of deforestation associated with the production of soybean imported in 2017. Soy deforestation exposure is calculated by:
In 2017, the EU27 + UK imported a total of 12.933054 Mtonnes of soy products divided into 40.2 % beans, 59.8 % cake and 0 % oil.
These imports were associated with 0.045475 Mha of deforestation.
Deforestation in the EU27 + UK soy supply chain was identified in key Brazilian biomes:
## Adding missing grouping variables: `COUNTRY_OF_PRODUCTION`
## # A tibble: 7 × 4
## # Groups: COUNTRY_OF_PRODUCTION [1]
## COUNTRY_OF_PRODUCTION BIOME SOY_DEF_EXP PCT
## <chr> <chr> <dbl> <dbl>
## 1 BRAZIL AMAZONIA 2591. 0.057
## 2 BRAZIL CAATINGA 1914. 0.042
## 3 BRAZIL CERRADO 29651. 0.652
## 4 BRAZIL MATA ATLANTICA 912. 0.02
## 5 BRAZIL PAMPA 10404. 0.229
## 6 BRAZIL PANTANAL 3.63 0
## 7 BRAZIL UNKNOWN BIOME 0 0
A first attempt at the map that can be improved
The soy-driven deforestation relates to the deforestation in 2017 that is expected to become soybean considering past trends. This indicator is calculated by:
We assign the totality of this soy-driven deforestation to the EU27+UK in absolute terms for 2017.
We expect this method to change for the paper (work in progress).
In 2017, the EU27 + UK were associated with 108501.35 ha of soy-driven deforestation with the following break-down per biome:
## Adding missing grouping variables: `COUNTRY_OF_PRODUCTION`
## # A tibble: 4 × 4
## # Groups: COUNTRY_OF_PRODUCTION [1]
## COUNTRY_OF_PRODUCTION BIOME SOY_DRIVEN_DEF PCT
## <chr> <chr> <dbl> <dbl>
## 1 BRAZIL AMAZONIA 9751. 0.09
## 2 BRAZIL CERRADO 98608. 0.909
## 3 BRAZIL MATA ATLANTICA 113. 0.001
## 4 BRAZIL PANTANAL 29.0 0
We can then associate these values with a deforestation intensity indicator that we can calculate as the ratio of deforestation in 2017 (per municipality) to existing “forest availability” (to be defined). This indicator could be used as a weighting factor to highlight the areas in Brazil which might require attention for future soy production in deforested areas.
The deforestation intensity I is:
\(I = SD*(TD/F)\)
where:
We calculate this metric first here using F = forest cover available by Mapbiomas:
Table of territorial deforestation in 2017:
## # A tibble: 6 × 2
## BIOME TERR_DEF
## <chr> <dbl>
## 1 AMAZONIA 676249.
## 2 CAATINGA 15006.
## 3 CERRADO 712968.
## 4 MATA ATLANTICA 37483.
## 5 PAMPA 67276.
## 6 PANTANAL 31263.
Then derive Figure 2 for the publication:
and then zoom in on Bahia (Matopiba region)
## # A tibble: 76 × 8
## TRASE_ID MUN_NAME_C STATE SOY_D…¹ FORES…² TERR_…³ INTEN…⁴ SOY_D…⁵
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 BR-1718907 SANTA ROSA DO TOCAN… TOCA… 1553. 1.16e6 3046. 0.003 0.002
## 2 BR-1721257 TUPIRAMA TOCA… 439. 4.83e5 612. 0.001 0.001
## 3 BR-1703073 BARRA DO OURO TOCA… 491. 8.96e5 1692. 0.002 0.001
## 4 BR-1711951 LAGOA DO TOCANTINS TOCA… 483. 7.40e5 1676. 0.002 0.001
## 5 BR-1703842 CAMPOS LINDOS TOCA… 1566. 2.34e6 2332. 0.001 0.001
## 6 BR-1712702 MATEIROS TOCA… 1868. 1.65e6 3958. 0.002 0.001
## 7 BR-1701101 APARECIDA DO RIO NE… TOCA… 716. 8.08e5 992. 0.001 0.001
## 8 BR-1718881 SANTA MARIA DO TOCA… TOCA… 746. 1.28e6 2626. 0.002 0.001
## 9 BR-1718451 PUGMIL TOCA… 117. 1.89e5 340. 0.002 0.001
## 10 BR-1720655 SILVANOPOLIS TOCA… 579. 8.50e5 1461. 0.002 0.001
## # … with 66 more rows, and abbreviated variable names ¹SOY_DRIVEN_DEF,
## # ²FOREST_HA, ³TERR_DEF, ⁴INTENSITY, ⁵SOY_DEF_INT
## # ℹ Use `print(n = ...)` to see more rows