Main
View or edit on GitHub
This page is synchronized from trase/models/indonesia/wood_pulp/main.ipynb. Last modified on 2025-12-13 00:30 CET by Trase Admin.
Please view or edit the original file there; changes should be reflected here after a midnight build (CET time),
or manually triggering it with a GitHub action (link).
from typing import List
import pandas as pd
from trase.tools.jupyter.observable import _notebook_html_string, Sankey
from trase.tools.sps import consolidate
def html_sankey(
df: pd.DataFrame,
value_column: str,
categorical_columns: List[str],
file_name="SEIPCS_sankey",
):
df = df.rename(columns={value_column: Sankey.VALUE_COLUMN}, errors="raise")
df = df.astype({c: str for c in categorical_columns}) # force columns to be strings
df = consolidate(
df,
numerical_columns=[Sankey.VALUE_COLUMN],
categorical_columns=categorical_columns,
)
df = df[[*categorical_columns, Sankey.VALUE_COLUMN]] # set desired column order
sankey_html = _notebook_html_string(
Sankey.NOTEBOOK,
cells_to_import=[Sankey.CHART_CELL],
cell_redefinitions={Sankey.DATA_CELL: df.to_dict("records")},
)
f = open(f"./{file_name}.html", "w")
f.write(sankey_html)
f.close()
import sys
from pathlib import Path
sys.path.append(str(Path.cwd().parent.parent))
from trase.tools.sps import SupplyChain
for year in [2015, 2016, 2017, 2018, 2019]:
sc = SupplyChain("indonesia/wood_pulp", year=year, bucket="trase-storage")
sc.preparation()
sc.load()
sc.export_results()
df = sc.to_df()
sc.upload_results()
# html_sankey(df, "VOLUME_RAW", ["SUPPLIER_GROUP", "EXPORTER_GROUP","IMPORTER_GROUP","DESTINATION"], f"SEI-PCS-sankey-{year}")
from trase.tools.aws import *
df = get_pandas_df(
"indonesia/wood_pulp/production/out/INDONESIA_WOOD_PULP_RESULT_2015_2019.csv",
sep=",",
)
df[df["SUPPLIER_GROUP"].isna()]
from trase.tools.jupyter.observable import notebook, sankey
sankey(df, "VOLUME_RAW", ["SUPPLIER_GROUP", "EXPORTER_GROUP", "DESTINATION"])
df["HS6"].unique()
from trase.tools.aws import *
for year in range(2015, 2020):
print(year)
df = get_pandas_df(
f"indonesia/wood_pulp/sei_pcs/SEIPCS_INDONESIA_WOOD_PULP_{year}.csv", sep=";"
)
df["PORT_OF_EXPORT"].unique()
print("Vol:", df["VOLUME_RAW"].sum())
print("Length:", len(df))
print(
"Dom mand:", df[df["COUNTRY_OF_DESTINATION"] == "INDONESIA"]["VOLUME_RAW"].sum()
)