Main
View or edit on GitHub
This page is synchronized from trase/models/argentina/corn/main.ipynb. Last modified on 2025-12-14 23:19 CET by Trase Admin.
Please view or edit the original file there; changes should be reflected here after a midnight build (CET time),
or manually triggering it with a GitHub action (link).
%configure_logging
from trase.tools.sps import SupplyChain
for year in [2015, 2016, 2017, 2018, 2019]:
supplychain = SupplyChain("argentina/corn", year)
supplychain.preparation()
supplychain.load()
# supplychain.flow_report_by_attribute("vol_bean", ["product_type"], significant_digits=10)
supplychain.run()
supplychain.flow_report_by_attribute(
"vol_bean", ["status", "branch"], significant_digits=10
)
supplychain.export_results()
# supplychain.upload_results()
import os
import pandas as pd
os.getcwd()
df = pd.read_csv(
"/usr/share/TRASE/trase/models/argentina/corn/2016/prepared/flows.csv", sep=";"
)
# df = supplychain.get("exporter")
# df.head()
# df_assets.head()
# df = df.groupby(["exporter_name"]).agg(sum)
# df = df.sort_values("vol_bean", ascending=False)
df = df[df["province"] == "SALTA"]
df = df[df["country_of_destination"] == "BOLIVIA"]
df = df[df["exporter_name"] == "UNKNOWN"]
# missing_rows = df[df["exporter"] == "0"]
# df = df[["exporter_name", "customs_office.customs_office", "country_of_destination", "product_type", "vol_bean", "province.name"]]
# missing_rows
df
df = supplychain.get("flows")
print(list(df))
df[["department_of_production.trase_id"]]
Sankey
from trase.tools.jupyter.observable import sankey
df = supplychain.get("flows")
sankey(
df,
"vol_bean",
[
"department_of_production.province.name",
"exporter_name",
"country_of_destination",
],
)
Chloropleth
from trase.tools.sps import consolidate, rename
from trase.tools.jupyter.observable import notebook
df = supplychain.get("flows")
df = df[df["exporter.cuit"] == "3350673744"].copy() # NIDERA ARGENTINA
df = consolidate(df, ["vol_bean"], ["department_of_production.geocode"])
df = rename(df, {"department_of_production.geocode": "id", "vol_bean": "value"})
notebook(
"@trase/choropleth-canvas",
["chart"],
{"country": "argentina", "width": 1500, "data": df.to_dict("records")},
)