Rtrs Tonnes 2016 2018
s3://trase-storage/brazil/soy/indicators/out/RTRS_tonnes_2016_2018.csv
Dbt path: trase_production.main_brazil.rtrs_tonnes_2016_2018
Explore on Metabase: Full table; summary statistics
Containing yaml file link: trase/data_pipeline/models/brazil/soy/indicators/out/_schema.yml
Model file link: trase/data_pipeline/models/brazil/soy/indicators/out/rtrs_tonnes_2016_2018.py
Calls script: trase/data/brazil/indicators/actors/certification/rtrs/RTRS_tonnes_2016_2018.py
Dbt test runs & lineage: Test results ยท Lineage
Full dbt_docs page: Open in dbt docs (includes lineage graph -at the bottom right-, tests, and downstream dependencies)
Tags: mock_model, brazil, indicators, out, soy
rtrs_tonnes_2016_2018
Description
This model was auto-generated based off .yml 'lineage' files in S3. The DBT model just raises an error; the actual script that created the data lives elsewhere. The script is located at trase/data/brazil/indicators/actors/certification/rtrs/out/RTRS_tonnes_2016_2018.py [permalink]. It was last run by Harry Biddle.
Details
| Column | Type | Description |
|---|---|---|
Models / Seeds
source.trase_duckdb.trase-storage-raw.rtrs_2016source.trase_duckdb.trase-storage-raw.rtrs_2017
Sources
['trase-storage-raw', 'rtrs_2016']['trase-storage-raw', 'rtrs_2017']
# -*- coding: utf-8 -*-
from trase.tools.aws.aws_helpers import read_s3_object
import pandas as pd
from trase.tools.aws.metadata import write_csv_for_upload
from trase.tools.aws.tracker import S3Object
csv_delimiter = ","
decoder = "UTF8"
KEY_2016 = "brazil/indicators/actors/certification/rtrs/in/RTRS_2016.csv"
KEY_2017 = "brazil/indicators/actors/certification/rtrs/in/RTRS_2017.csv"
def get_dataframe(KEY):
check_data = read_s3_object(KEY)
headers = check_data[0].decode(decoder).rstrip().split(csv_delimiter)
data = [row.decode(decoder).rstrip().split(csv_delimiter) for row in check_data[1:]]
df = pd.DataFrame(data, columns=headers)
return df
# Read the two datasets
df_2016 = get_dataframe(KEY_2016)
df_2017 = get_dataframe(KEY_2017)
# Rename columns and concatenate
df_2016.rename(columns={"Tons_RTRS": "tonnes"}, inplace=True)
df2016 = df_2016[["GEOCODE", "YEAR", "tonnes"]]
df_2017.rename(columns={"TONS_RTRS": "tonnes"}, inplace=True)
df2017 = df_2017[["GEOCODE", "YEAR", "tonnes"]]
output = pd.concat([df2016, df2017])
# Upload this table to AWS by first writing to csv buffer
write_csv_for_upload(
output,
"brazil/indicators/actors/certification/rtrs/out/RTRS_tonnes_2016_2018.csv",
upstream=[S3Object(KEY_2016, "trase-storage"), S3Object(KEY_2017, "trase-storage")],
)
import pandas as pd
def model(dbt, cursor):
dbt.source("trase-storage-raw", "rtrs_2016")
dbt.source("trase-storage-raw", "rtrs_2017")
raise NotImplementedError()
return pd.DataFrame({"hello": ["world"]})